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ON THE METHOD OF THE LOCAL POTENTIAL AS APPLIED
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Abstract—The method of the local potential, viewed as a tool for the approzimate solution of the
equations governing the diffusion of heat and vorticity, is examined critically.
Conditions are derived which are sufficient to establish an exact correspondence between local potential
and multi-moment solutions of the equations of diffusion; no local potential formulation of the equations
of diffusion has been found which does not satisfy the given conditions,

NOMENCLATURE
functions occurring in trial solutions;
heat capacity per unit volume;
concentration of solutes in multicomponent
mixture;
diffusion co-efficients;
function;
function;
functions;
functions;
function;
functionals;
linear differential operator;
length;
Pressure,
thermal current density;
functions of time;
region of definition of an equation;
time;
function, which is streamwise velocity com-
ponent in boundary layer flow;
velocity at “edge” of boundary layer;
normal component of velocity in boundary
layer;
independent variables;
independent variable;
diffusion distance;
a constant;
defined in section & (see equation 6.3);
boundary of region within which equations are
defined;
diffusion distance or variational symbol;
diffusion distances;
independent variables;
temperature;
thermal conducttvity;

HMT Vo!l. I7. No. 3 A

393

I viscosity;

v, kinematic viscosity;

p,pi,  densities;

1, relaxation time;

&, transformed dependent variable;

&4, approximating functions;

@, ®;, functions,

Subscript

0, refers to dependent variables not subject to
variation.

Superscripts

0,5, refer o dependent variables not subject to
variation.

INTRODUCTION

As a TooL for the approximate solution of the equations
of diffusion and mass transfer, the method of the local
potential presents a somewhat controversial image.
That the technique is related to the Galerkin technique
for the solution of differential equations [1] is accepted
beyond question (indeed, it has been claimed [2] that,
“the so called self consistent approximation based on
the local potential is the Galerkin scheme”) but why
there is a relation and precisely what that relation is
has yet to be made clear; the appearance of a number
of recent papers, [3-6] employing the method of the
local potential, billed as a new variational technique,
is ample proof of this statement.

The Galerkin technique owes its origins to the study
of the classical linear elliptic equations. The solution
of such equations is well known to be equivalent to
the problem of finding that function, of a given class
of functions, which will render a given functional
stationary [1,7]. The Galerkin approach, although
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equivalent to the variational technique of Ritz 8] in
those cases where an equivalent variational formulation
of the problem exists, ts not, however, dependent on a
variational formulation and it is for this reason that
it has gained ils prominent position as an approxi-
mation technigque.

To solve the equation

L) = f.
subject to
u=0onT.

where T is the boundary of the region R in which the
equation is defined, the Galerkin approach sets

n

ulx, ¥) =3 apilx, y),

i=1

(L.3)

where the functions ¢; are the first # members of a
complete set of functions, each member of which
satisfies condition (1.2). To determine the » unknowns.
a1, -.., dy, the residual which results when (1.3) 1s sub-
stituted tn 1.1 is made orthogonal to each of the
functions ¢,7=1,....n: thus the ¢, are determined
from the » equations

ﬂ {L(_zilamﬁi)—f}gbde_Q T

In the limit this procedure will provide an exact
solution to the problem, since the only function
orthogonal to every member of a complete set of func-
tions is the null function. In principle, the technique 1s
applicable to a much wider range of problems than is
indicated in the above example, In cases where the
approximating functions ¢; do not satisfy some or all
of the imposed boundary conditions a residual will
result when (1.3) 1s substituted 1n (1.2). The procedure
in such cases is to add the boundary residual to the
differential equation residual and to then force the
resulting residual to be orthogonal to each of the
functions ¢, i =1,2....,a [2,9]. In general, it is un-
usual for this procedure to be followed and in both
the Galerkin and local potential schemes the situation
in which the approximating functions satisfy the same
boundary and initial conditions as the songht solution
is by far the more common one.

The practical difficulties which confront the Galerkin
approach as applied to the solution of the equations
of diffusion can perhaps best be illustrated by consider-
ing a specific example, taken here to be the stecady two
dimensional incompressible boundary layer equations.
No variatienal principle exists for this equation [10]
and any procedure based on the Galerkin scheme can
only be interpreted in the sense of forcing a residual
to be orthogonal to the first » members of a complete
set of functions.

With the streamwise velocity component v approxi-
mated in the form
H

uix, )= Y axx, v)*

F
i=1

the most basic requirements on the set of approxi-
mating functions ¢; are that

("(f),‘

ey

=0, y—aoc and ¢(x, 0)=0;

in addition u# must satisfy the condition

w(x, v) = Uilx), y—x,

where U, denotes the main stream velecity.

Two direct applications of the Galerkin approach
to this problem have been developed. Bossel [11]
guided by the exact Falkner Skan solutions, has made
use of a transformation of variables of the form

-y
glx)’
where g is a specified function of x which depends on

the nature of the mainstream velocity, U, ; the approxi-
mating functions ¢; are taken as

hi = Pdop) = (1 —n),

{=x

wherc
n =exp(—xY), Zaconstant,
so that
u.m) =3 aln(1-n),
i=0
with
aoll} = Ul

Since

é —& 0

&y g0

u approaches U, in an exponential manner [although,
as remarked by Bossel, a more appropriate represen-
tation would be # = exp( - y*&/g(x)].

MacDonald [12] has emploved a transformation in
which the new dependent variable is the square of the
shear stress and the independent variables are x and u,
where u denotes the streamwise velocity component.
Further elementary transformations of the dependent

*In what follows it will be assumed that all variables
have been non dimensionalised in the standard manner.
Thus the boundary layer equation is

‘e fu 1d Fu

— [

i v = +—.
Ox dy  2dx © 0 y?



Method of the local potential

variable result in an equation with dependent variable
¢, which must satisfy the conditions:

N
—C-?=0,u=0.

=0, u=1;
¢ “ cu

Various complete sets, a typical one of which is
Pl) = (1—P Wt k= —1,2,3,..,

are then employed.

Yet 2 third and, at a first view, more obvious
approach is to introduce a boundary layer thickness
#{x), i.e. a distance normal to the boundary within
which the streamwise velocity changes from the value
zero, at the wall, to within a small percentage of the
value U,(x) in the mainstream. A change of variables

=7
T 8(x)

then allows an approximation of the form

{=x 7

n

ull,m = :;l ai({)ln), (1.4)
where
20 =0, 220, =1L i=12..m
dn
and

-21 ailQ)i(1) = Uel0).
This is the approach that has been used in the local
potential formulations of Schechter [13, 14] and Weihs
and Gal-Or [3,4].

The essence of the local potential technique is the
reformulation of the original set of partial differential
equations in terms of a restricted variational principle;
this principle, in conjunction with the approximation
(1.4), is used to generate a set of ordinary differential
equations for the a,((),i=1,2,....n, and 3({). It will
be shown that subject to certain conditions being
satisfied such procedures are equivalent to determining
the g; by the Galerkin scheme and determining & by a
varjation of the well known Karman—Pohlhausen
approach [15]. A number of examples of this equiv-
alence will be presented.

2. THE METHOD OF THE LOCAL POTENTIAL

Restricted variational principles are characterised by
the appearance within the functional to be made
stationary of the actual function which renders that
functional stationary. In the variational analysis lead-
ing from the restricted principle to the corresponding
Euler-Lagrange equation this latter function is not
subjected to variation. As a simple example, the
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problem of finding the solution to
Nu P
= flx, ) 2.1
S5 =S B
u=0onT, (2.2).

is equivalent to finding that function u, of the class C of
functions satisfying (2.2), which is such that

2 2
b“. {(clu) + (a—u) + 2fu}dx dy=46l=0. (23)
R

One of the restricted variational formulations of the
same problem is that of finding that function u of the
class C which is such that

2 32
5[J'u{%+$—f}dxdy =3I, =0; (24)
R

in equation (2.4) the expression within brackets is to
be evaluated at the stationary state, denoted by suffix
zero, and is therefore not subjected to variation.

If an approximation to u is now sought in the form
{1.3) then, in the manner of Ritz [8] the g; can, in the
case of (2.3), be determined from the set of equations

dl

~d—;= , i=1,2,...n, (2.5)
or, in the case of (2.4), from the set

d!

=0, i=12,...,n (2.6)

da;'

In the case of (2.6) the procedure is to regard suffix
zero terms in {2.4) as invariant, to differentiate with
respect to a. i =1,2,...,n, and to subsequently set

uol. )= . al)bilx.

Mathematically, the latter approach is identical to that
used in the method of the local potential, It is easy
to see that provided each of the ¢, satisfy condition
(2.2) an identical set of algebraic equations for the g is
obtained from equations (2.5). A further restricted
principle can be obtained by application of the diver-
gence theorem to (2.4); this yields, after use of (2.2),

d JJ. {Vu.Vug+uf}dR = 0. 2.7
R

Alternatively, (2.7) may be obtained from the Euler-
Lagrange equation,

) )
fu  Ox\fu,] 8y\Ou, N
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corresponding to the principle

o JfF(u, uy, ) dR = 0.
R

From the above discussion it is clear that for the
simple elliptic problem described by (2.1) and (2.2)
there are at least two restricted variational formulations
which lead to identical sets of equations for the « in
(1.3); furthermore, this set of equations is identical to
that obtained via the classical Ritz procedure or, for
that matter, the classical Galerkin procedure.

3. RESTRICTED PRINCIPLES AND THE
EQUATIONS OF DIFFUSION

The applications of the method of the local potential
to the solution of the equations of diffusion have in-
variably introduced a scaled co-ordinate »n = y/é(x),
where 0 is some penetration distance associated with a
diffusing quantity which may, for example, be vorticity,
heat or concentration of solute [3-6,13,14]. The
solution to two-dimensional diffusion problems is
therefore approximated in the form

n

u(x, y) = Z al{x)ilx, 1),

=1

(3.1)

where the ¢;,i=1,2,...,n, are chosen to satisfy the
basic conditions of the problem (an obvious condition
on the ¢; being (@¢/dn) —0,n—1). A variety of
methods may be employed to determine . The local
potential approach is to determine the (n+1) un-
knowns in (3.1) in the manner of Ritz [8]; for the
a;,i=1,...,n, this procedure is equivalent to the
Galerkin scheme, but this clearly cannot be so for the
remaining unknown, 4.

Counsider the general problem of sclving the equation
F(u, Uyy Uy, Uxx, uyy) =0, (32)

which may be nonlinear in form. A restricted vari-
ational principle for equation {3.2) is that of finding
that function u of some class C which will render
stationary the functional

Euo 6u0 52140 ézug
I= F — =5, JdR
J].u (ug, ax 8y ax? &l
R

= quFo dR. (3.3)

R

Suppose next that a solution is sought in the form (3.1),
where the functions ¢); are members of the class C. Then

1= [[T5 a0 o

and the equations

i

— =0,

(525
vield a set of equaticns for the a; which are identical
to the set obtained when the g; in (3.1) are determined
by the Galerkin approach. The remaining equation,

or
28
gives
n aqf’! .
” (;1 a; F&)F" dR = 0*, (3.4)
R
But
Chi_ —nloi_ —yoe
8 & 6y 6 dy

Equation (3.4) may now, in the spirit of the local
potential, be written in the form

)
J‘jyf—quRzo.
Oy

R

(3.5)

4. EQUIVALENCE OF RESTRICTED PRINCIPLES
We consider at this stage the class of variational
principles

f o x)
5J de. Flu, ue,u)dy =0, (4.1)
¢ [s]
where [ is a constant and «fx) is some unknown
penetration distance associated with some diffusing
quantity. We assume that approximations for u are to
be sought in the form

u=3y af(x)d),-(g(%c—)).

i=1
Substitution of (4.2) in (4.1) gives

(4.2)

i
éj dx@(at,a',al,--.,fln,all,--»-a:-)=0, (43)
4]

where a prime denotes differentiation with respect to x
and

2tx)
b= j F(u, uy, uy) dy. (44)

0

The Euler-Lagrange equations corresponding o (4.3)

are
b d (c?d) _o
b dx\da')

ad d{od
Pominaiyasd Srups xo, j=1,2,,--gn;
Pa; dx\fa;

*Note that Fy),— 45 = 0; those cases where part of the
boundary of R is the curve y = &(x) are thus accounted
for in (3.4).
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so that, from (4.4),

*[é6F & (oF
L [aa ax(ﬁa )]dy > (43
*|dF 0 (oF
d =1, X
L [aaf ax (aaj)] y=0 j=hnn (46)
provided that
F(u, Uy, uy)]y=z = 0,
OoF —0
S ly=e
and
oF
Y = 0; j = l) 29 3
Ba} y=a J "
Now
OF _OF Pu_ OF dux | OF tu
da; Ou Ba; OuxOa; auyaaj
o ,6F 1, 0F
where
L_d¢,
Y 1T
Similarly,

& (6F\ &, oF\ -y, @ oF
é;(a—a;)—;a;(@a;)—ﬁmau ¢’ax(a)

Equation (4.6) now gives

Ter o [aF d {oF
L[a‘b;(au,) ay( )]‘W‘y 0.j="1.

provided that

In the same way we can show that (4.5) reduces to

el T

But

*3F Ouy

0.
o uy do PP

so that

aFauyd _J’“y é [dF d &F
o Ouy o oauyé’y u, Y uy@u,

Thus
“|éF @& faF\ @ {0OF
“_Z dy =0,
j; [6“ Ox (@Hx) 5.V (aur)]yuy y=
provided that
oF _
Bylyes

The theory given above and in section 3 may now
be summarised as follows:

Theorem 1
If two variational principles,

i x)
5j‘ de- Gilu,ug, ) dy =0, i=12, (4.7
0 0
can be derived from the same partial differential
equation,

H(us Ux, Uy, Uxx, uyy) = {}, say,

and if a solution for u is sought in the form

uny)= Y, ai(x)tﬁx(&%)

then provided that for i =1,2, j=1,2,...,n, the ex-
pressions
G 8G; duy 0G; Juy,
yea  Bux B |yms  Ottx Oilyma’
0Gi|*=*® y oG,
Y Quyly=o’ ’au,, y=a

are independent of o, a;,i=1,2,...,n, the sets of
ordinary differential equations for the determination
ofthea;,i=1,2,...,n, and o will be identical and will,
respectively, be the set obtained from

-3
J pHdy=0, i=12....n
0
and

&
J. y?-Ede'——-O. (4.8)

o Oy
Definition

When, in an approximation scheme for the solution

of parabolic partial differential equations, two vari-
ational principles, which can be derived from the same
partial differential equation (or equations), lead to
identical sets of ordinary differential equations for the
unknown parameters describing the solution they will
be said to be equivalent.

Theorem 2

In those cases where the upper limit = in the
variational principles (4.7) is replaced by oo and a
solution is sought in the form (4.2) sufficient conditions
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for the equivalence of the principles are that for

i=12j=012.... n, the expressions
oG "™ aG;
b~ and U —
Gliyly=0 iy ly=m
are independent of &, a;, /= 1,2,.... 1

5. REMARKS ON PREVIOUS LOCAL
POTENTIAL FORMULATIONS

Schechter [13,14]) has applied the local potential
technique to the solution of the equations governing
the incompressible flow in a steady two dimensional
boundary layer. The derived functional (see equation
(15) of [14]) is

L * C a i
= f dx [ I:— Ugly (zl + 2ug o U+ = (Ou) }dy
o Jo dy ox  2\0y

and a solution for u is sought in the form

u= crf( 4 )
a(x)

From Theorem 2 the equivalence of F; and F; where
(/Ll()

~L x Au e} )
F2=J dxf [HOT”+¢ ‘ uo:ludy,(SZ]
0 0 cX cy

70 3
follows immediately; thus* the equation for §(x) is

[“I 8u+‘6u Fu 5u
Jo uﬁx L?_y 6\

where u is given by (5.1) and v follows from the mass
conservation equation.

The work of Weihs and Gal-Or [3] concerns bound-
ary layer flows which include viscous effects, coupled
heat and multi-component mass transfer and chemical
reactions. The approach separates a local potential,
derived from the equations of motion, into two parts;
these parts separately represent the transport of
momentum and the transport of heat and mass.

In the case of uniform flow of a homogeneous
incompressible fluid over a flat plate the derived
furictional reduces to

L ~oen ity
11 = dx J 2”0 - U
s} n ax
.
Ju
+ (uov(, ) }dy (5.4)
dy /&

A solution for u is sought in the form u = ¢{n), where
n =1y, ${I)=1 and ¢(1)=0; it follows from (54)
and Theorem 1 that Iy is equivalent to

L 8(x) a @ 62
- [ ax f [uoﬂﬂ, ﬂ_ﬁ]udw
0 o 0x

“ay 8y
*Since F; and F, are both derived from the same
differential equation (see [14]).
tEquation 27 of [3] should read

{5.1)

dy =0, (5.3)

J [pb * é—)—’— 0-0291667 + /20 2666667} =0
o

The second example given in [3] concerns the iso-
thermal multi-component boundary layer on a flat
plate lying parallel to a uniform stream. The functionals
quoted for this problem arc (5.4) and the functional

f[n- ¢ e
i
I; = Y=o acd et ooe! L
JLi=t [0 )
R

!
—Z i :c'}]dydx, (55)

Yooy dy

where

p=3 pi, a=pidp. i=1.2,..,(n—1),

=1
i is the number of chemical components present in the
fluid and R denotes a rectangular contro! volume with
sides parallel to the co-ordinate axes. Solutions for the

¢; are sought in the form

m

Cip = Z au( MB](O( )) i= 1,2,...,(?1—1). (56)

i=1

From (5.5), (5.6) and Theorem 2 it is not difficult to
deduce that the functionals I, and

n—1 n.0 1.0

Lo C'Cy

Iy = Z Uy —+tg o~
=1 Ix (,?y

R
gorot Se?
. Dy; ?’]ci} dydx
Cy j=1 Y
are equivalent provided that for all i =1,2,..., (n—1}
and j = 1,2,...,m the expressions

de

n—1
¢;(b0(1 - Z D= qj)
: o
6(71‘ n—1 a 0
ﬂﬂd F‘(Uocg’“ Z D,‘jﬁ‘ﬁ
¥

=1 0y

=

are independent of &;; and ;. Use of the representa-
tions empleyed in [3] for the ¢; shows that the above
conditions are satisfied.

Further applications of the above theory may be
found by reference to the papers of Yu [5] and
Lemieux et al. [6].

We note that in view of the close association of
equation (4.8) with the established integral methods of
fluid mechanics [157 it is to be expected that the local
potential formulation of problems involving adverse
pressure gradients will lead to unreliable results.

6. THE VARIATIONAL PRINCIPLE OF VUJANOVIC
Yujanovic [ 18] has recently presented an interesting
variational principle for the dissipative wave equation
o0 E*G K

To 4= — V2 =0,
C

1
at* 6: (6.1)
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where ) denotes temperature, ¢t the time, ¢ the heat
capacity per unit volume, « the thermal conductivity
and 7 a relaxation time, which is related to the thermal
current density g by the equation

9. _
rat+q— Kvo.

For a discussion of equations (6.1} and (6.2) the reader
is referred to [19].

The one dimensional version of Vujanovic’s principle
is that

131 ¥ 592 502
d = =2 ) erdr=0 e
ool G ) frome e

where

(6.2)

)’=z-

In the derivation leading from (6.3) to the one dimen-
sional version of (6.1) it is assumed that the tem-
perature variation 86 vanishes on the boundaries.
Since the classical diffusion equation is obtained by
taking the limit t — 0in (6.1), the procedure with regard
to {6.3) is to perform the variation, divide by e"* and
subsequently take the limit 1 —= 0. Applications of the
principle are presented in [ 18] and [20]; apart from
one example, where the results are identical to those
obtained by use of the Galerkin approach, the method
is to introduce a scaled co-ordinate 5 = y/4(r) and to
search for a solution

0= 0(n).

Consider now

ty
i= J. D¢, 0,8 ) dre,*
0

Wl o\ (60N
o= ["[E G o e

Then 87 =  gives the equation

d(am o _ .
de\as’) o8

use of equation (6.4), together with relations like

where

00 1 -y
—_—— 9’ — = T IBI’
dy & & & o

*In what follows a prime will denote differentation with
respect to ¢ in the case of §{t) and with respect to # in the
case of B(x).
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now establishes, after elementary manipulation, that
¢ 629+66 8%0) y o
0 fox? ox vﬁyz ddy Y
PN\ 2 T ’J"
—|= —(@P—-2|=0 (65
). zor-i]-o s
The assumption that the variation §6 =0 on the
boundaries is equivalent in part to the statement that
all possible trial functions must satisfy the same con-
dition on y= &(t); since (1) is defined to be a
penetration distance #'(n)}, =5 = 0 and (6.5) accordingly
reduces to
i3 M 2%0) &0
vy oty —dy=0. 6.6
L {I ax?  dx iﬁyz}yéy Y (65)
Equation {6.6) may therefore be used as an alternative
to (6.3) in any example in which 8 = 8(y/3(t)). This
conclusion is readily demonstrated when applied to
the examples contained in [18] and [20]. In the limit
T — 0 (6.6) gives
[og 0% o0
——7— jy—dy=0
_[) [ﬁx ! W} ™
as the equation for the determination of 8; but it is
not at all clear that the sclution for 0{y/8) obtained
in this way is any more reliable than that obtained in
some other way, such as, for example, by solution of
‘led &%
——7-— {dy=0.
L I:@x ?5y2:| ¥
(See, in this connection, [21].)

CONCLUSION

This paper has examined the method of the local
potential from a critical viewpoint. Conditions have
been presented which when satisfied identify the
method with a much simpler, more readily comprehen-
sible approach. No application of the local potential
technique has been found which fails to satisfy such
conditions. The method cannot, therefore, be viewed as
a viable new technique for the solution of the equations
of diffusion, but must be regarded as a method produc-
ing results of a comparable standard to those obtained
by application of the established Karman-Pohlhausen
type integral techniques of fluid mechanics [15].
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SUR LA METHODE DE POTENTIEL LOCAL APPLIQUEE A LA
RESOLUTION DES EQUATIONS DE DIFFUSION

Résumé—On examine de maniére critique la méthode du potentiel local en tant qu'outil pour la
résolution approchée des équations régissant la diffusion de chaleur et la vorticité,
On en déduit des conditions suffisantes pour établir une correspondance exacte entre le potentiel local
et les solutions de multi-moment des équations de diffusion; il n’a pas été trouvé de formulation du
potentiel tocal des équations de diffusion qui ne satisfasse pas ces conditions données.

DIE METHODE DES ORTLICHEN POTENTIALS ZUR
LOSUNG VON DIFFUSIONSGLEICHUNGEN

Zusammenfassang—Als Hilfsmittel zur niherungsweisen Lsung von Gleichungen der Turbulenzaus-

breitung wurde die Methode des ortlichen Potentials untersucht. Ausreichende Bedingungen wurden

abgeleitet, um cine genaue Ubereinstimmung zwischen drtlichen Potential- und Multimomentldsungen

fiir die Diffusionsgleichungen aufzustellen. Man fand keine Formulierung des &rtlichen Potentials fiir
dic Diffusionsgleichung, dic den gegebenen Bedingungen nicht geniigten.

0 NPUMEHEHHUHW METOAA JIOKAJIBHOIO TICTEHUHAJIA AN PEMIEHASA
YPABHEHWH ANUPDY3INH

Annotaius — HcocrneayeTcas  BOIMOKHOCUTh

IPHMEHEHUA MEeTOa
APUBIIHNKERHOTO pelleHns ypaBHeHHid AHDYIUH.

JOKaNLHOrO MOTeHUManma naf

HaitaeHbl 10CTATOYHBIE YCIOBHA AT YCTAHOBIEHHA TOYHOIO COOTBETCTBHA MENKAY PELIEHHUAMY
ypasHeHu#d audipysun, 0AY4EHHbIMH METOLOM JICKANBHOTO MOTEHUHANA H METOHOM MOMEHTOB.
He Bbur0 HaiIeHO TakHX peWweHHi vpaaneHud AHOOY3IUU, NOAYYCHHBIX METOLOM JIOKAJILHOTO

MOTEHLHANE, KOTOPLIE HE YAOBICTROPUIM Dbl NAHHDIM YCITOBHAM.



