
rnt. J. Heat Mass Transfer, Vol. 17, pp. 393 400. Pergamon Press 1974. Printed in Great Britain 

ON THE METHOD OF THE LOCAL POTENTIAL AS APPLIED 
TO THE SOLUTION OF THE EQUATIONS OF DIFFUSION 
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(Received 3 April 1973 and in revised form 3 September 1973) 

A b s t r a c t - - T h e  m e t h o d  of  the  loca l  po ten t i a l ,  v iewed as  a too l  for  the  a p p r o x i m a t e  s o l u t i o n  o f  the  
equations governing the diffusion of heat and vorticity, is examined critically. 

Conditions are derived which are sufficient to establish an exact correspondence between local potential 
and multi-moment solutions of the equations of diffusion; no local potential formulation of the equations 

of diffusion has been found which does not satisfy the given conditions. 

N O M E N C L A T U R E  

at,  a o,  functions occurring in trial solutions; 
c, heat capacity per unit volume; 
c~, concentration of solutes in multicomponent 

mixture; 
D~, diffusion co-efficients; 
f,  function; 
F, function; 
g, g~, functions; 
G, G~, functions; 
H, function; 
I, l j, functionals; 
L, linear differential operator; 
l, length; 
p, pressure; 
q, thermal current density; 
q~, functions of time; 
R, region of definition of an equation; 
t, time; 
u, function, which is streamwise velocity com- 

ponent in boundary layer flow; 
tie, velocity at "edge" of boundary layer; 
v, normal component of velocity in boundary 

layer; 
x, y, independent variables; 
Y, independent variable; 
~t, diffusion distance; 
:Z, a constant; 
7, defined in section 6 (see equation 6.3); 
F, boundary of region within which equations are 

defined; 
6, diffusion distance or variational symbol; 
c5~, diffusion distances; 
(, r/, independent variables; 
0, temperature; 
~c, thermal conductivity; 
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#, viscosity; 
v, kinematic viscosity; 
p, p~, densities; 
~, relaxation time; 
~b, transformed dependent ,,ariable; 
~bt, approximating functions; 
~, ~ ,  functions. 

Subscript 

0, refers to dependent variables not subject to 
variation. 

Superscripts 
0, s, refer to dependent variables not subject to 

variation. 

INTRODUCTION 

AS A TOOL for the approximate solution of the equations 
of diffusion and mass transfer, the method of the local 
potential presents a somewhat controversial image. 
That the technique is related to the Galerkin technique 
for the solution of differential equations [1] is accepted 
beyond question (indeed, it has been claimed [2] that, 
"the so called self consistent approximation based on 
the local potential is the Galerkin scheme") but why 
there is a relation and precisely what that relation is 
has yet to be made clear; the appearance of a number 
of recent papers, [3-6] employing the method of the 
local potential, billed as a new variational technique, 
is ample proof of this statement. 

The Galerkin technique owes its origins to the study 
of the classical linear elliptic equations. The solution 
of such equations is well known to be equivalent to 
the problem of finding that function, of a given class 
of functions, which will render a given functional 
stationary [1,7]. The Galerkin approach, although 
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equivalent to the variational technique of Ritz [8] in 
those cases where an equivalent variational formulation 
of the problem exists, is not, however, dependent on a 
variational formulation and it is lbr this reason that 
it has gained its prominent position as an approxi- 
mation technique. 

To solve the equation 

Llu) = ,f, (1.1) 

subject to 

u = 0 on F, (1.2) 

where F is the boundary of the region R in which the 
equation is defined, the Galerkin approach sets 

u(x,y) = Z a/pi(x,y), (1.3) 
i = 1  

where the functions ~bi are the first n members of a 
complete set of functions, each member of which 
satisfies condition (1.2). To determine the n unknowns, 
al . . . . .  a,, the residual which results when (1.3) is sub- 
stituted in 1.I is made orthogonal to each of the 
functions qS~, i = I . . . .  , n; thus the a~ are determined 
from the n equations 

t l{L(~_.oic/) i)- f}~o,  dg=O,  j = l , 2  . . . . .  n. 

R 

In the limit this procedure will provide an exact 
solution to the problem, since the only function 
orthogonal to every member of a complete set of func- 
tions is the null function. In principle, the technique is 
applicable to a much wider range of problems than is 
indicated in the above example. In cases where the 
approximating functions qSi do not satisfy some or all 
of the imposed boundary conditions a residual will 
result when (1.3) is substituted in (1.2). The procedure 
in such cases is to add the boundary residual to the 
differential equation residual and to then force the 
resulting residual to be orthogonal to each of the 
functions qS, i = 1, 2 . . . . .  n [2, 9]. In general, it is un- 
usual for this procedure to be followed and in both 
the Galerkin and local potential schemes the situation 
in which the approximating functions satisfy the same 
boundary and initial conditions as the sought solution 
is by far the more common one. 

The practical difficulties which confront the Galerkin 
approach as applied to the solution of the equations 
of diffusion can perhaps best be illustrated by consider- 
ing a specific example, taken here to be the steady two 
dimensional incompressible boundary layer equations. 
No variational principle exists for this equation [10] 
and any procedure based on the Galerkin scheme can 
only be interpreted in the sense of forcing a residual 
to be orthogonal to the first n members of a complete 
set of functions. 
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With the streamwise velocity component u approxi- 
mated in the form 

f~ 

u(x, )') = ~ ai(xkhi{x, ),,)* 
i - I  

the most basic requirements on the set of approxi- 
mating functions 4~i are that 

0, ) m and q~i(x, 0 ) = 0 ;  
?y 

in addition u must satisfy the condition 

u(x, y) --+ Ue(X), y --" ~ ,  

where Ue denotes the main stream velocity. 
Two direct applications of the Galerkin approach 

to this problem have been developed. Bossel [11] 
guided by the exact Falkner Skan solutions, has made 
use of a transformation of variables of the form 

V 
~=x,  Y -  " 

o(x)" 

where g is a specified function of x which depends on 
the nature of the mainstream velocity, U~; the approxi- 
mating functions q~i are taken as 

where 

so that 

with 

Since 

t / =  e x p ( -  gY), g a constant, 

n 

u({, tl) = ~ ai(Oqi(1 -tl), 
i=O 

ao(O= Ue(0. 

8 -c?  /~ 
~y g(x) tt c3q' 

u approaches Ue in an exponential manner [although, 
as remarked by Bossel, a more appropriate represen- 
tation would be ~/= exp(-y2~/g(x)]. 

MacDonald [12] has employed a transformation in 
which the new dependent variable is the square of the 
shear stress and the independent variables are x and u, 
where u denotes the streamwise velocity component. 
Further elementary transformations of the dependent 

*In what follows it will be assumed that all variables 
have been non dimensionalised in the standard manner. 
Thus the boundary layer equation is 

?u ~u 1 d ~2u 
u . . . . .  U z + -  

?x+Vi~y 2dx ~'~V 2' 
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variable result in an equation with dependent variable problem of finding the solution to 
4,, which must satisfy the conditions: ~2 u ?2 u 

+~..2 = f(x, y), (2.1) 
ax 2 

4 , = 0 ,  u =  1; ~uu =0 ,  u = 0 .  
~ y  

u = 0 on F, (2.2) 

Various complete sets, a typical one of which is is equivalent to finding that function u, of the class C of 

4,k(U) = (1--U3)U k+~, k = - 1, 2, 3 . . . . .  functions satisfying (2.2), which is such that 

are then employed. 6 f f d # u h 2  ~f~)2 } 
Yet a third and, at a first view, more obvious [~,~x] + +2fu dxdy-3I~=O.  (2.3~ 

approach is to introduce a boundary layer thickness R 
6(X), i.e. a distance normal to the boundary within One of the restricted variational formulations of the 
which the streamwise velocity changes from the value same problem is that of finding that function u of the 
zero, at the wall, to within a small percentage of the class C which is such that 
value U~(x) in the mainstream. A change of variables 

Y 
( = x,  ,1 = 6(x) 

then allows an approximation of the form 

u(~, tl) = ~ a,(04,(~l), 
/ = 1  

where 

and 

04,, 
4,,(0) = 0, ~--  = 0, r /=  1, i = 1 , 2  . . . . .  n, 

I'~" ¢,~2u 0 ~2uo } 
~JJ  ~0xu ~_~15-+ ~_~.2-f~?y d x d y - M 2 = 0 ;  (2.4~ 

R 

(1.4) 
in equation (2.4) the expression within brackets is to 
be evaluated at the stationary state, denoted by suffix 
zero, and is therefore not subjected to variation. 

If an approximation to u is now sought in the form 
(1.3) then, in the manner of Ritz [8] the at can, in the 
case of (2.3), be determined from the set of equations 

d l j  
- 0,  i =  1 , 2  . . . . .  n, (2.5)  

da, .2." 
a,(04,,(1) = Ue(O. 

,= 1 or, in the case 

This is the approach that has been used in the local 
potential formulations of Schechter [13, 14] and Weihs 
and Gal-Or [3, 4]. 

The essence of the local potential technique is the 
reformulation of the original set of partial differential 
equations in terms of a restricted variational principle; 
this principle, in conjunction with the approximation 
(1.4), is used to generate a set of ordinary differential 
equations for the adO, i = 1, 2 . . . . .  n, and 6((). It will 
be shown that subject to certain conditions being 
satisfied such procedures are equivalent to determining 
the at by the Galerkin scheme and determining 5 by a 
variation of the well known K;irman-Pohlhausen 
approach [15]. A number of examples of this equiv- 
alence will be presented. 

2. THE M E T H O D  OF T H E  LOCAL P O T E N T I A L  

Restricted variational principles are characterised by 
the appearance within the functional to be made 
stationary of the actual function which renders that 
functional stationary. In the variationaI analysis lead- 
ing from the restricted principle to the corresponding 
Euler-Lagrange equation this latter function is not 
subjected to variation. As a simple example, the 

of (2.4), from the set 

dI2 
- 0,  i = 1 , 2  . . . . .  n. (2 .6)  

dal 

In the case of (2.6) the procedure is to regard suffix 
zero terms in (2.4) as invariant, to differentiate with 
respect to at, i =  1, 2, . . . ,  n, and to subsequently set 

u0(x, y) = ~ at(x)4,,(x,  y). 
i = 1  

Mathematically, the latter approach is identical to that 
used in the method of the local potential. It is easy 
to see that provided each of the 4,~ satisfy condition 
(2.2) an identical set of algebraic equations for the at is 
obtained from equations (2.5). A further restricted 
principle can be obtained by application of the diver- 
gence theorem to (2.4); this yields, after use of (2.2), 

~ t I {Vu. Vuo + uf } dR --- O. (2.7) 

R 

Alternatively, (2.7) may be obtained from the Euler- 
Lagrange equation, 
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corresponding to the principle 

[tF(u, ux, uy) dR = 6 O. 
R 

From the above discussion it is clear that for the 
simple elliptic problem described by (2.1) and (2.2) 
there are at least two restricted variational formulations 
which  lead to identical sets of equations for the a / in  
(1.3); furthermore, this set of equations is identical to 
that obtained via the classical Ritz procedure or, for 
that matter, the classical Galerkin procedure. 

3. RESTRICTED PRINCIPLES AND THE 
EQUATIONS OF DIFFUSION 

The applications of the method of the local potential 
to the solution of the equations of diffusion have in- 
variably introduced a scaled co-ordinate r /=  y/b(x), 
where 6 is some penetration distance associated with a 
diffusing quantity which may, for example, be vorticity, 
heat or concentration of solute [3-6, 13, 14]. The 
solution to two-dimensional diffusion problems is 
therefore approximated in the form 

u(x, y) = L as(x)flps(X, r/), (3.1) 
i = 1  

where the ~b~, i = 1, 2 . . . . .  n, are chosen to satisfy the 
basic conditions of the problem (an obvious condition 
on the ¢i being (a~bs/8~/)~0,r/~ 1). A variety of 
methods may be employed to determine 6. The local 
potential approach is to determine the (n+ l )  un- 
knowns in (3.1) in the manner of Ritz [8]; for the 
a ,  i =  1 . . . . .  n, this procedure is equivalent to the 
Galerkin scheme, but this clearly cannot be so for the 
remaining unknown, 6. 

Consider the general problem of solving the equation 

F(u, u~, uy, uxx, uyy) = 0, (3.2) 

which may be nonlinear in form. A restricted vari- 
ational principle for equation (3.2) is that of finding 
that function u of some class C which will render 
stationary the functional 

;f ( I= uF O, Sx, Sy, Sx 2 ' 8y 2 ] 
R 

= ffuFodR. (3.3) 
R 

Suppose next that a solution is sought in the form (3.1), 
where  the  functions Cs are members of the class C. Then 

::[,t, 1 = as i 

R 

and the equations 

81 
-- -  = 0, i = 1 , 2  . . . . .  n, 

yield a set of equations for the a/which are identical 
to the set obtained when the as in (3.1) are determined 
by the Galerkin approach. The remaining equation, 

81 
- - ~  0 ,  
86 

gives 

But 

f f t ~ l  asddpi~F°dR:O''86 J 
R 

(3.4) 

86 6 8~ 6 8y 

Equation (3.4) may now, in the spirit of the local 
potential, be written in the form 

,/ cy 
R 

4. EQUIVALENCE OF RESTRICTED PRINCIPLES 

We consider at this stage the class of variational 
principles 

f ' d x ~  "x' 6 F(u, ux, uy) dy = 0, (4.1) 
do dO 

where l is a constant and ~(x) is some unknown 
penetration distance associated with some diffusing 
quantity. We assume that approximations for u are to 
be sought in the form 

_-1 " (~Tx)) (42) u = ~ ai(x)~s • 
i 

Substitution of (4.2) in (4.1) gives 

6 d x ~  ' . . , a , , a l ,  a;) = 0, (4.3) 

w h e r e  a prime denotes differentiation with respect to x 
and 

q) = F(u, u~, uy) dy. (4.4) 

The Euler-Lagrange equations corresponding to (4.3) 
are 

a~ d x \ a ~ J  0, 

aO d (3(I)'~ 
ax\oa)~-Iz-;-'] = 0 '  j = l , 2  . . . . .  n, 

8a1 

*Note  that F0)yffi~x) = 0; those cases where part of the 
boundary of R is the curve y = 6(x) are thus accounted 
for in (3.4). 



so that, from (4.4), 

f~ FOF o/OF'x] 
o, (4.5) 

'FOF 0 :OFy] d 
L~a-~ - -~xk~) J  y = O ,  j = l ,  2 . . . . .  n, (4.6) 

provided that 

and 

F(u, ux, uy)]r=, = O, 

~ ,  =a - -0 ,  

~a),= =0, j=l,2 . . . . .  n. 

Now 
OF (~F Ou OF Ou~ OF Ouy 
Oaj - Ou" Oai Jr ~ux ~ "~ Ou~, Oaj 

OF y , ,OF 1 ,OF 
= O j N - ~  Cj~+~¢j ~ ,  

where 

~) = , '1 = ~(x)" 

Similarly, 

o-; ,~_, = ~?'~) = ~-~1~+~'~x ,_.... 

Equation (4.6) now gives 

fo'C'" ' L~u-~\~]-~ q~ldy = O, j = 1 . . . . .  n, 

provided that 

0F I ~ 
~,glo=0, ~=1 . . . . .  . .  

In the same way we can show that (4.5) reduces to 

0F 0 0F - y  ~ , f z a,,,ldy 
Jo LOu Ox \ O u x / d L  ~ ~=~ . j  

r ~ OF Ou~, 
+ Jo S~u,~d dy=O" 

But 

Ou__ Z = - y ouy l Ou 

Oo( ot Oy ot Oy' 

so that 

r" OF Ouy ~ 'y  O {OF'X OF [ 
- -  U y - -  J o ~  ay--jo= Oyi~)dY-'~,=; 
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Thus 

I [-OF O / O F \  O /OF'x-] 

provided that 

u y - -  = 0. 

The theory given above and in section 3 may now 
be summarised as follows: 

Theorem 1 
If two variational principles, 

fo F~(x) 
6 dx Gi(u, ux,uy) dy=O,  i = 1 , 2 ,  (4.7) 

do 

can be derived from the same partial differential 
equation, 

n(u, ux, ur, uxx, u , )  = O, say, 

and if a solution for u is sought in the form 

then provided that for i = 1, 2, j = 1, 2 , . . . ,  n, the ex- 
pressions 

at y= ,  
dG~ (~Ux OGl Oux 

are independent of c(, at, i = 1 ,2 , . . . , n ,  the sets of 
ordinary differential equations for the determination 
of the at, i = 1, 2, . . . ,  n, and ct will be identical and will, 
respectively, be the set obtained from 

f~ c~iHdy=O, i = 1 , 2  . . . . .  n, 

and 

Ou 
y ~y H dy -- O. (4.8) 

Definition 
When, in an approximation scheme for the solution 

of parabolic partial differential equations, two vari- 
ational principles, which can be derived from the same 
partial differential equation (or equations), lead to 
identical sets of ordinary differential equations for the 
unknown parameters describing the solution they will 
be said to be equivalent. 

Theorem 2 
In those cases where the upper limit ~ in the 

variational principles (4.7) is replaced by ~ and a 
solution is sought in the form (4.2) sufficient conditions 
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for the equivalence of the principles are that for 
i = 1,2. j = 1,2 . . . . .  n, the expressions 

gGi b . . . .  8% 
4b ~;~ ,,=o and u,, ~u,,,  ..... 

are independent of ~, aj, j = 1, 2 . . . . .  n. 

5. R E M A R K S  O N  P R E V I O U S  L O C A L  

P O T E N T I A L  F O R M U L A T I O N S  

Schechter [13, 14] has applied the local potential 
technique to the solution of the equations governing 
the incompressible flow in a steady two dimensional 
boundary layer. The derived functional (see equation 
(15) of [14]) is 

2"° :x "+5\Oy/ J 
and a solution for u is sought in the form 

u =  erf ( ~ ) ) ) .  (5.1) 

From Theorem 2 the equivalence of F~ and F2 where ;:/:,[ . o : <  
F2 = dx  Uo 8-~x + Vo ?y ~ judy ,  {5.2) 

follows immediately; thus* the equation for 6(x) is 

f :  V ~ld 8U (~2tdq g']b! L . ~ + v ~ - 5 / j y  & dy=O, (5.3) 

where u is given by (5.1) and v follows from the mass 
conservation equation. 

The work of Weihs and Gal-Or [3] concerns bound- 
ary layer flows which include viscous effects, coupled 
heat and multi-component mass transfer and chemical 
reactions. The approach separates a local potential, 
derived from the equations of motion, into two parts; 
these parts separately represent the transport of 
momentum and the transport of heat and mass. 

In the case of uniform flow of a homogeneous 
incompressible fluid over a flat plate the derived 
functional reduces to 

. 3.0 
[ _ - , u o w .  

+ (UoVo Ou°~OUqd y. 15.4) 

A solution for u is sought in the form u = qSff/), where 
q = y/6, ~b(1)= 1 and 4)'(1)= 0; it follows from (5.4) 
and Theorem 1 that I~ is equivalent to 

fo " ?'x'V 0.0 e.o o2,,07 
/2 = dx / /u0 ~ -  + v0 

Jo L cx  t?y dy'_J udy''~ 
~ |  

*Since F~ and F2 a r e  both derived from the same 
differential equation (see [14]). 

"~ Equation 27 of [3] should read 

f~IpU3(Ji[!~O'O291667+,uU20"2666667]dx=O. 
( f )  d 

The second example given in [3] concerns the iso- 
thermal multi-component boundary layer on a flat 
plate lying parallel to a uniform stream. The functionals 
quoted for this problem are (5.4) and the functional ffFoz,{ 
I3 .0 , , .0 ['Ci = --  ( l tO£i ) ( i4-LO(i  ~,- 

(.1' 

where 

n 

P = ~ P i ,  
i = l  

- '£~i  ?cY ~¢i~ 'i dydx Du~?y , } ]  , (5.5) 

c i = p d p ,  i = 1 , 2  . . . . .  ( n - l ) ,  

n is the number of chemical components present in the 
fluid and R denotes a rectangular control volume with 
sides parallel to the co-ordinate axes, Solutions for the 
ci are sought in the form 

Ci = E aij(X)~)J , i = 1, 2 . . . . .  (n-- 1). (5.6) 
j = l  

From (5.5), (5.6) and Theorem 2 it is not difficult to 
deduce that the functionals 13 and 

/4  = /'/0 JJ  u=~ 0~ - + v °  ~?~7 
R 

~ .  , &o 7 ) 

are equivalent provided that for all i = 1, 2 . . . . .  (n -1 )  
and j = 1, 2 . . . .  , m the expressions 

._, &.o V,~ 

¢~ "o c°- E ° . ~ 1  : 
j = l  

, -1  & o \ l  
and 12o C° D J I 

j= 1 8y / ~,= 
- -  --  E i j - -  
OV 

are independent of a u and 6i. Use of the representa- 
tions employed in [3] for the ci shows that the above 
conditions are satisfied. 

Further applications of the above theory may be 
found by reference to the papers of Yu [5] and 
Lemieux et al. [6]. 

We note that in view of the close association of 
equation (4.8) with the established integral methods of 
fluid mechanics [15] it is to be expected that the local 
potential formulation of problems involving adverse 
pressure gradients will lead to unreliable results. 

6. T H E  V A R I A T I O N A L  P R I N C I P L E  O F  V U J A N O V I C  

Vujanovic [18] has recently presented an interesting 
variational principle for the dissipative wave equation 

0 2 0  ~30 K 2 
r ~ - + ~ - c V  0 = 0 ,  (6.1) 
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where 0 denotes temperature, t the time, c the heat 
capacity per unit volume, x the thermal conductivity 
and T a relaxation time, which is related to the thermal 
current density q by the equation 

~ + q = - xVO. (6.2) 

For a discussion of equations (6.1) and (6.2) the reader 
is referred to [19]. 

The one dimensional version of Vujanovic's principle 
is that 

~ ', ry, r / do \  2 f d o \ 2 l  
o z - -  - 7  - -  e ' / 'dy  = (6.3)  'J,oLb,) o, 

where 

K 
7 ~ -  . 

C 

In the derivation leading from (6.3) to the one dimen- 
sional version of (6.1) it is assumed that the tem- 
perature variation 60 vanishes on the boundaries. 
Since the classical diffusion equation is obtained by 
taking the limit z ~ 0 in (6.1), the procedure with regard 
to (6.3) is to perform the variation, divide by e '/~ and 
subsequently take the limit T ~ 0. Applications of the 
principle are presented in [18] and [20]; apart from 
one example, where the results are identical to those 
obtained by use of the Galerkin approach, the method 
is to introduce a scaled co-ordinate ~/= y/6(t) and to 
search for a solution 

0 = 0(~). 

Consider now 

where 

I = O(t, 6, 6') dt,* 

(i) =_. I:') I,,( (dO 2 dO 2 , 

Then 6I = 0 gives the equation 

(6.4) 

use of equation (6.4), together with relations like 

O0 1 dO - - V  

- 0 '  

* In what follows a prime will denote differentation with 
respect to t in the case of 6(0 and with respect to t / in the 
c a s e  of 00/). 
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now establishes, after elementary manipulation, that 

O' 2 ~ . . . .  2 77 -(~),=,[2tO,-~J=0. (6.5, 

The assumption that the variation 60 = 0 on the 
boundaries is equivalent in part to the statement that 
all possible trial functions must satisfy the same con- 
dition on y = 6(0; since 6(0 is defined to be a 
penetration distance 0'(r/)Lr= 6 = 0 and (6.5) accordingly 
reduces to 

~f  d20 d0 d20l  d0 
t r  ~x2 + ffxx- y ~y2~y ~y dy = 0. (6.6) 

Equation (6.6) may therefore be used as an alternative 
to (6.3) in any example in which 0 = O(y/6(t)). This 
conclusion is readily demonstrated when applied to 
the examples contained in [18] and [20]. In the limit 
z ~ 0 (6.6) gives 

f0 ~Fd0 d20] a0d  l -7 jy  y=0 
as the equation for the determination of 6; but it is 
not at all clear that the solution for O(y/& obtained 
in this way is any more reliable than that obtained in 
some other way, such as, for example, by solution of 

~V dO d201 d 
L -7 _I y--0 

(See, in this connection, [21].) 

C O N C L U S I O N  

This paper has examined the method of the local 
potential from a critical viewpoint. Conditions have 
been presented which when satisfied identify the 
method with a much simpler, more readily comprehen- 
sible approach. No application of the local potential 
technique has been found which fails to satisfy such 
conditions. The method cannot, therefore, be viewed as 
a viable new technique for the solution of the equations 
of diffusion, but must be regarded as a method produc- 
ing results of a comparable standard to those obtained 
by application of the established Kfirmfin-Pohlhausen 
type integral techniques of fluid mechanics [15]. 
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SUR LA METHODE DE POTENTIEL LOCAL APPLIQUEE A LA 
RESOLUTION DES EQUATIONS DE DIFFUSION 

R6sum6--On examine de mani6re critique la m6thode du potentiel local en tant qu'outil pour la 
r6solution approch6e des 6quations r+gissant la diffusion de chaleur et la vorticit6. 

On en d6duit des conditions suffisantes pour 6tablir une correspondance exacte entre le potentiel local 
et les solutions de multi-moment des 6quations de diffusion; il n'a pas 6t6 trouv~ de formulation du 

potentiel local des 6quations de diffusion qui ne satisfasse pas ces conditions donn@s. 

DIE METHODE DES ORTLICHEN POTENTIALS ZUR 
LOSUNG VON DIFFUSIONSGLEICHUNGEN 

Zusammenfassung--Als Hilfsmittel zur n~iherungsweisen L~sung yon Gleichungen der Turbulenzaus- 
breitung wurde die Methode des ~Yrtlichen Potentials untersucht. Ausreichende Bedingungen wurden 
abgeleitet, um eine genaue (Jbereinstimmung zwischen ~rtlichen Potential- und Multimomentl~Ysungen 
ftir die Diffusionsgleichungen aufzustellen. Man land keine Formulierung des /Yrtlichen Potentials f[ir 

die Diffusionsgleichung, die den gegebenen Bedingungen nicht gentigten. 

O FIPIdMEHEHIAH METOJXA IIOKAIIBHOFO HOTEHUHAIIA Jlfl,q PEILIEHHY:I 
Y PABHEHIdlTI JlHOOY31d H 

AunoTawig - -  Hccnenyexca BO3MO)KHOCTb rlp~tMeHeHtt~ MeTO~la JIOKaJlbHOFO noTettuHana ilnfl 
npM6nax~eHHoro petuetmfl ypaaNeHH~ aH~bqby3~a. 

Ha~B.eHbl llOCTaTOqHbte yc.rlOBHfl 11Jl,q yCTaHOB01eHH~ TOqHOFO COOTBeTCTBMfl Mex¢ay peweHtt~MH 
ypaBHeHHl~ B, Hqbqby3HH, IIOJlyqeHHblMl, I MeTOI1OM YloKa.rlbHOFO rlOTeHUHa.rla H MeTOIIOM MOMeHTOB. 
He 6btno 8a~aeHo T&KHX QetueHM~ ypaBHeHHM 211,1(~by3MH, HoJlyqeHHblX MeTO2]OM .~oKaJ'lbHOrO 

noreHu~aaa, KOTOpb/e He y3IOBIIeTBO[D~LqH 6bl B.aHHbIM yc.qOBHJtM. 


